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ABSTRACT 

A lattice version of the Abelian Higgs model is studied in arbitrary 

Euclidean dimension. Using an exact duality transformation, the theory is 

rewritten in terms of its topological excitations. The dual form of the theory 

specifies in a simple way all the allowed topological excitations as well as 

their interactions. The combination of the scalar Higgs field and the Abelian 

gauge field produces excitations found neither in the pure gauge theory nor 

in the pure scalar theory (x - y model). In three dimensions, for example, 

we find finite vortex strings terminating on monopoles, as well as closed 

vortex loops. Implications of these singularities for the critical behavior 

of the theory are briefly discussed. 

a Operated by Universities Research Associaiion Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

Ln recent years, there has arisen a growing awareness of the 

importance of topologically stable solutions of non-linear field theories. 

Indeed, topological excitations have been shown to be of central 

importance in the physics of fluids and solids,’ elementary particles,’ 

and cosmology.3 The existence of these excitations follow from very 

general features of the theory, in particular, its internal symmetries 

and its space-time dimensionality. 

These excitations can have profound effects on the behavior of 

the theory. In the first ,place, since they are collective excitations of 

the original fields of the theory, they can appear as real concrete 

objects. An example of this is vortex formation in superfluid He4 

which may be regarded as a topological excitation of a theory with a 

global U(I) symmetry! In the second Place, these excitations can, under 

certain circumstances, induce phase transitions. Examples of this 

cphenomenon are the phase transition of the two dimensional x-y model,5 

the Ising model interface phase transition! and the confinement 

mechanism in three-dimension compact photodynamics first described 

by Polyakov.7 

In this paper, we will analyze the topological excitations of a 

locally U(I ) invariant theory which may be thought of as a lattice version 

of the Abelian Higgs model. Our approach will be to use an exact 

duality transformatior!!which will allow us to write the Abelian Higgs 
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model as a function of its topological excitations. In this dual form of 

the model, the partition function will be expressed as a functional 

of certain integer valued fields which represent to topological excitations 

of the original scalar and gauge vector fields. In this way, we will be 

able to express both the form of the excitations and their interactions. 

In a later paper we will describe the effects of these excitations on 

certain correlation fu.nctions of the theory, and will discuss possible 

phase transitions arising from the presence of these objects? 

Our interest in this model has several sources, First, the theory 

represents a kind of hybrid of the models discussed in Ref. 8 . In particular, 

it is a combination of thersimplex numbers, s = 1 (x-y model) and s z-2 

(compact photodynamics) theories. Since these two models have qualitatively 

different topological excitations, it is interesting to see the form of the exci- 

tations which emerge from the hybrid theory. From a less formal and :more 

physical point of view, the model is interesting for at least three reasons. 

First, when ,properly treated, the model has much in common with 

models of spin-glasses which are currently of great interest to solid 

10 
state physicists. Second, in their seminal paper on topological 

sixlgularities as elementary particles, Nielsen and Olesei’ considered 

the Abelian gauge field coupled to a charged, scalar field in a Higgs-type 

potential. The symmetry of our model is the same as theirs, except 

that our vector gauge fields are compact. As we shall see, this 

modifies their results in an interesting way. A third motivation follows 
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if we recall Polyakov’s result for compact photodynamics in three 

dimensions .7 He showed that the ‘point monopoles of that theory ,produced 

confinement in the sense that the expectation value of Wilsonl s 1oo.p 

integral fell like e 
-A 

, where A is some minimum area enclosed by the 

gauge loo,p. It is interesting to ask how this result and its interpretation 

is changed when the gauge fields are coupled to matter. The simplest 

such theory is the one we will study in this paper. 

In the next section, we will introduce the model and show that in 

a naive continuum limit it becomes the Abelian Biggs model in which the 

radial degree of freedom has been completely frozen. In section III 

we introduce an exact duality transformation which lets us write the 

model in terms of certain integer valued fields. In section IV we 

show how to identify these integer valued fields as the topological 

excitations of the original theory by introducing a slightly modified 

form of the Abelian Higgs model for which this identification is 

reasonably straightforward. Some comments about our results and 

some eomparisoxls with related models are presented in section V. 
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Consider a hypercubical lattice in d-dimensions 0 Associated .with each 

site, j, of the lattice is a two-dimensional spin S(j ) = e iX (j ). (For notational 

simplicity we will not indicate the vector nature of the lattice vector, j. ) 

Associated with each link of the lattice is another spin Up(j) = e i0 (j ) p , 

a link being defined by a lattice site, j and a direction, p. These 

spins interact according to the lattice Lagrangian 

9 = ‘! Z S(j)U +(j)S+(j - F) -t 2 II 2;~ (j )uy(j + G)up’(j -I- $)UV+(j) + h. c. (1) 
I IJ P p 

where the first sum runs over all links of the lattice and the second 

sum runs over all plaquettes. The partition function (generating 

functional ) of the theory is 

r* = I 68 p(j)6X(j)Exp ApX(j) - 0 
-Tr 

(2) 

I 

+‘;‘Os (d -‘2,! ‘l-‘,~,p,~~~Ba-~~pl’..P~-~,~ t 
A/Jj) )I , 

where E is the totally antisymmetric symbol in d-dimensions, and A 
P 

denotes a discrete difference, e. g., ApX (j) = X (j) - X(j - ,c). Note 

that the term ,proportional to p is just the usual action for the Pure 

gauge field theor,y on a lattice. 

This Lagrangian is invariant under a local U(1) rotation: 
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S(j) --t R(j)S(j) 

@a) 
UJj 1 +- R?j - fi)Ull(j)R(j) 

or, imterms of the angles 

x?ji, * x(j) + A(j) 

(3b ) 

where R(j) = e iA(j 1 . Thiis is just a compact version of the local symmetry 

of scalar QED. 

To obtain the correspondence with the Abelian Higgs theory, we 

temporarily restore the lattice spacing a. The lattice Lagrangian then 

Define 19 
P 

z tip, and consider the naive continuum l&nit a * 0. We I 

use the replacements 

x (j ) ” kc;(x 1 

(5) 

x * aed/ ddx . 

Expanding the cosines to second ,order yields a constant term plus 
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where 

F UV EC u”~-..~~~~‘..eb-2’o VA I 0‘ 

We would like to expose the relationship of this 
expression to the broken-symmetry phase of the 
Abelian Higgs model, whose Lagrangian density is 
conventionalLy written (in the Euclidean continuum) 
as 

L= ~(o,~)‘D”‘p+ V(@‘#)+ t F,,’ , 

where 

and we take the potential 

(V 

V(x) = $( x - R2)2. 

Writing #=pe Ix, the Lagrangian density becomes 

S= 8ro’(a~~-rA~)‘+9(8~~)’ 

+V(p~++F,v2. (6) 

We .expect that the field # will suffer spontaneous 
symmetry breakdown, and the ground state of the 
theory will have (p2)= Ra. We may formally freeze 
out the radial vibrations by considering the limit 
x- 00. Then (a “p)‘= 0, ‘and the Lagrangian sim- 
plif ies toL2* I3 
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Y= ; R2Ppx - AJ2 + 1 F 2 

4e2 pv 
(9) 

where we have resealed the potential A + $A 
P t-i 

The correspondence 

with the naive continuum limit of our original expression Eq. ( 6 ) 

is now apparent, and we should identify K = R2, f3 = [(d - 2)!/ .e]“. 

Now, one might think, because our theory possesses the gauge 

symmetry (Eq. 3 ),that it is a trivial theory since, choosing A(j) = -x (j ) we 

apparently have the theory of a free vector boson of mass m = eR. 

However, this is not correct since x is an angular variable and conse- 

quently need not be single-valued. Thus,A = -x cannot be a true gauge 

transformation in general, since a multivalued gauge function, A, may 

well induce physical singularities in the field strength, F 
P’ 

Alternatively , 

if we choose to admit such singular gauge transformations, then A 
P 

itself takes on the significance of an angular variable, i. e., Ap becomes 

compact a In this case, its equation of motion is 

(o +m2)Ap = 0 (mod 2~r) e (10) 

The singularities allowed thereby are, of course, the topological 

excitations of this theory, just as monopoles arise in Polyakovls discussion 

of compact photodynamics for d = 3, or for that matter, just as vortices 

arise from the solution of 

OX = 0 (mod HIT) 

in his discussion of the d = 2 XY model.7 

(11) 
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The naive equivalence which we have demonstrated between our 

lattice theory and the continuum Abelian Higgs model does not guarantee 

that the continuum limit of the lattice theory is the Abelian Higgs model 

when that limit is taken via the renormalization group. Another way to 

say this is that the large distance behavior of our theory and the 

continuum Abelian Higgs model may not be the same, at least not for 

all values of K and p. This possibility is also associated with the following 

important observation: From (Eq. 5) we see that the ,phase of the lattice 

Higgs field x (j) retains its identity as a phase angle in the continuum, 

since x(,j) * x (x). On the other hand, the lattice gauge angle, eP(j) 

becomes a AP(x ) as a + 0, so that the finite range of ‘eP(j) is mapped 

into an infinite range for AP(x). So even in this naive limit, the gauge 

fields in some sense are no longer-compact.. Hence, it is not clear 

that the the0r.y will still retain the full effects of the multivalued gauge 

transformations alluded to earlier, and so, one might fear that the 

topological excitations associated with the compact nature of 8 P(j ) 

will disappear ., This could well lead to a difference in the Long range 

behavior of the lattice and continuum theories. We will comment further 

on this problem in section V. 
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III. THE DUALITY TRANSFORMATION 

We now discuss the dual form of our model in various dimensions. 

In what follows we will always assume periodic (spherical) boundary 

conditions 0 Other boundary conditions may induce a background field 

which in certain cases can change the ,physics. This will be discussed 

elsewhere. 9 

A, Two Dimensions 

In two dimensions, the partition function, Eq. 2, issimply 

z = 6 x(j)6Bp(j)e 
&COS (Apx tj ) - 8 p(j 1) + Pcos (E: pvApB v (j )9 

l (12) 

Using the Fourier expansion 

we obtain 
(13) 

(14) 

A 8 
PV P v 

(j) + imp(j) APX (j) - 6 P(j) 

where the first product sign denotes the fact that we have one I. n(j+P) 

for each plaquette, and one L.:. ml,,(j )(K ) for each link. Carrying out the 
ti 

angular integrals, we obtain the constraint equations on the integers 

mJj 1, n(j 1: 
(1) Apmp(j) = 0 

(2) y(j) - c&,n(j) = 0 . 
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The first equation is exactly as in the d = 2 XY model; its general 

solution is a curl 

mP(j) = E &+,+(j ) j 

where +(j ) is an integer-valued scalar field which is naturally defined 

on the vertices of the dual lattice. (The dual lattice is obtained by 

shifting the original lattice by half a lattice s,pacing in each direction. ) 

Inserting this into the second equation, we find that 

EPvAP(+(j ) - n(j )) = 0 . 

In two dimensions, this means simply that the gradient of .+[j) - n(j ) 

vanishes, so 4(j) - n(j ) is independent of j, and it is easy to see that 

without loss of generalit,y, we can choose it to be zero. Thus, the 

partition function becomes (up to an overall constant) exactly 

Z= c 
’ ‘9(j )(‘)I cpvAv44j liK) l 

IWi)t 

The original, continuous angular fields have been replaced by integer- 

valued fields on the dual lattice. A primary virtue of this Fourier 

analysis is its simplicity in the low temperature limit, p, K 2 1. 

Keeping the leading terms in this limit and neglecting field independent 

constants, Z becomes 

(16) 

(37) 
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This is a useful low temperature representation for Z for two reasons. 

First, the quadratic terms are most important for P,K >> 1, quartic 

and higher order terms being effectively less important by anextra 

factor of p 
-1 -1 

0rK O Second, this observation implies that it is 

reasonable to try to expand the Lagrangian in these terms. This should 

provide us with a systematic algorithm for exploring smaller and smaller 

values of K and .p. Note also the fact that K and p appear in the denominator 

of the coefficient of the quadratic term. This is a typical effect of a 

duality transformation: high temperatures of the original representation 

are mapped into low temperatures of the dual representation, and vice 

versa. 

We have argued that the expression in Eq. 18 is a quantitatively good 

approximation to the full ,partition function, Eq. 12, at low- temper&ures. 

But it is also qualitatively useful outside thelow temperature domain. 

First we note that the symmetries of the full ,partition function and the 

quadratic approximation are the same. This means that the to,pological 

excitations implied by these two forms are the same (see also section IV). 

Second, Eq. 18 is useful for at least a qualitative determination of the 

critical ,properties of the system. Whether the theories defined by 

Eq. 17 andEq. 18 (or their analogues in higher dimensions) lie in the 
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same universality class is not clear. But experience with similar 

models, notably the XY model, suggests that quadratic forms such 

as ( 18 ) are a good guide to at least the most general features of the 

,phase transitions. This point will be discussed further in ref. ( 9 ). 

For, these reasons we shall often restrict our attention to the simple 

quadratic approximations rather than the full theories. This should 

raise no conceptual difficulties: higher order terms can always be 

included in a straightforward way. 

We now want to write Z in a form which displays explicitly the 

topological excitations. This can be done by using the identity valid 

for arbitrary f(.i), 

co 

c f(n) = 

n=-co 

00 

e - 2nikz f(z)dz s 

-UJ 

This allows us to replace the sum over integer-valued fields by continuous 

fields plus sources 

z = c s S2% IA* (j ))2 + m2+ (j )2] f 2tiP(j )#j) 
d44j >e 

{Pti 9 

where we set m2 : K/p, 

(49 1 

(20 1 

Next, we may carry out the $(j ) integrations, and we find 
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-K 4~r~z ,p(j )D(j -k;m2 )p(k) 
j,k 

(21) 

where Z. is a massive-s,pin-wave partition function, (i. e. it is Z with 

all p(j) = O),and D(j-k;m’)is the lattice Green’s function in two dimensions 

satisfying 

(-AP(j)2 -f m2)D(j - k; m2) = .gjke 

We will show in section IV that the integers ,p(j) may be thought of as 

the vortices of the original fields, so we may describe the system 

represented by this partition function as a theory of massive spin waves 

,plus vortices. This is analogous to the well-known result of the 

Kosterlitz-Thouless treatment of the d=2 x-y model: which is a 

certain m 2 = 0 limit of our result. The contribution of 

the vortices to Z can be thought of as that of a gas of charges interacting 

through a short -range potential. Note that these vortices do not 

interact with the massive spin waves whose partition function is Z 0’ 

This is a result of retaining only the quadratic form of Z, Eq. 18. 

Higher order terms will induce interactions between the spin waves and 

vortices. 

The occurrence of the mass m leads to significant differences 

(22) 

from the two-dimensional XY model (m = 0). The long range, Coulomb 
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(logarithmic) potential of XY model is replaced here by an exponentially 

decreasing ,potential 

(23) 

and, equally important, the self energy, t.~ Z D(0; m2), remains finite 

in the infinite volume limit. In the d = 2 XY model, the volume 

divergence of the self-energy gives rise to a neutrality condition: the 

only allowed configurations of vortices are those with total over-all 

vorticity zero. In our case, on the other hand, there is no neutrality 

condition for this (Yukawa) gas of vortices. 

Note that our solution makes ,plausible the assumption of Callan, 

et al. ?2 that the d=2 Abelian Higgs model can be approximately described 

by an ideal gas of vortex points (instantons ). Specifically, this will 

be a good approximation when the density of instantons is sufficiently 

small so that the mean separation between them is large compared with 

the range m -1 of the interaction ,potential. This will be true at 

sufficiently low temperatures when e -& is small. Note that the ideal 

gas assumption may also be reasonable at higher temperatures since 

the strength of the interaction effectively decreases like K. 

The short range nature of the vortex-vortex interaction, and the 

lack of neutrality are also crucial for a discussion of the ,possible 

phases of the syste.m. We will deal with the question elsewhere09 
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we turn now to a discussion of the to,pological excitations which one 

finds in the three-dimensional case. 

B. Three Dimensions 

In three dimensions, we have (suppressing site labels) 

q3 cos (E 
6x 6 8 oe. 

pvXEXp(J A 6 ) + K cos(AgX - eo) 
z = 

p 0 

n1 @)Im (K) 6~68~ exp 1 = -n 
%v 

2 
(T 

pvE p&+sAp 53 

t 
n 

P”9 mP 1 

+ ma(Ad.x - eo) 3 
. (24) 

Performing the x integrations, we obtain the constraint 

Aomo=O . . 

Since the divergence vanishes, mo is a curl of another field A 
P 

m CF = E a ppApAp . 

AP is defined on links of the dual lattice as discussed in Ref. ( 8 ). 

Performing the Bo integrations gives the second constraint 

1 
-E 2 ppay3yvApnyv 

+m = 0 
(3 

(25) 

(26) 

(27) 

or, in terms of A P’ 



-17- FERMILAB-Pub-77/97-THY 

L- 
1. E 

appAp 5 Eppvnpv 
-A 

P 3 = 0 

The curl being zero, the quantity in brackets must be a gradient 

of another field S, defined on the vertices of the dual lattice, 

1. -f 
2 PP4JV - A = -APs P 

or 

. (29b) 

Now, recall that the functional sum in Eq. 24 is over all distinct sets 

of n 
ELV 

and rno which satisfy Eq. 25 and Eq. 27. But fixing { n 
PV’ 

m (r) 

does not unambiguously define A 
P 

and S. AP is defined only up to a 

gradient, i. e., m. is unchanged by the replacement A p -+AB + A$L 

n will be unchanged also if, at the same time, S *S + A, Thus, the 
PV 

dual theory ‘possesses a gauge invariance similar to the original theory 

except that the fields A 
P 

and S are discrete and integer valued rather 

than continuous. Ln terms of them, we have 

where the sum is understood to be over n*s and m’s satisfying the 

representation Eqs. 26 and 29. 

As before, we may replace the sum over integer -valued fields 

with an integration over continuous fields plus a sum over certain 

(28) 

(294 

(30) 

sources: 
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We recall the representations Eqs. 26 and 29b for n and m . 
PV P 

Inserting them 

into the exponents, we can write the exponential as 

ZK n -I- .L m = ZK 
PVPV P P p.V ep,UX (AX -,AXS)+L E 

P l-dAPA~ 

=X(E K 
pwh pv 

-E 
PPX P P 

A L )Ax + ( E AK >s /AlA h pv 

5 ZJ,A, -I- QS (32) 

where we have used ,periodic boundary conditions and summation by 

parts. We may now formally rewrite the (partition function as 

(33a 1 

exp 2ti(JXAX -I- QS) 
3 

c 

I f 

u 

s 

6 AX6 
c --$ (AX- qS)2 - & ( cophA pA,)2 -+ i2n(JkAX + QS) 

Se (33b 1 

iJ,,Qt 

where the last form is, up to overall constants, the quadratic approximation, 

accurate for (3,~ >> 1, as discussed in the last subsection. 
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The integration and summation variables have been changed from 

I mpvJ npt to (AX, St and (Kpv, Lpi to { Jx, Qi , respectively. IX-I 

making this change we must recognize that the real degrees of freedom 

of the the0r.y are the m!s, n’s, K’S, and L’s. The gauge invariance of 

the theory in terms of its dual variables discussed above requires, 

in the usual way, that we specify gauge conditions when integratixlg and 

summing over the A’s, S’s, J’S and Q’S in order to avoid overalldivergences 

from extraneous summations. This is indicated by the ,primes in the last 

equation. Note also that the gauge choices must be made in tandem: For 

example, if we choose A That all of this formal ._ 0 
= 0, we must also fix Jo = 0. 

manipulation, in fact, leads to the correct result can be seen by going 

back to the expression Eq. 24, and choosing a gauge in the summation 

before introducing the sources. A complete discussion of the ,procedure 

for the d =3 XY model (the m2 = 0 limit of our theory) is given in 

Ref. ( 8 ). 

We will show in the next section that the JX1s and Q’s may be 

regarded as the topological excitations of the original theory, But if 

they are to represent real excitations, then any configuration of J1’s 

and Q’s must be gauge invariant 0 From Eq. 32 we can write Jx and Q 

in terms of K a.nd L 
P-v P’ 

from which it is apparent that 

AxJx Cj 1 = Q(j) (34) 

which ensures that any configuration of J’s and Q’s will have a gauge 

invariant meaning. (See also ref. ( 8 )). 
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How can we understand the appearance of these topological 

excitations? Recall what is already known about certain related 

theories. Had we started with no gauge <potential 8 
P’ 

we would be 

dealing with the pure XY model which, for d = 3, has topological 

singularities given by closed vortex loo,ps, represented by a conserved 

topological current J D 
P 

Had we begun with the pure gauge theory, 

compact photodynamics, we would have found the instantons to be 

magnetic monopoles Q. The topological singularities of our Abelian 

Higgs model are a combination of these two types, namely closed 

vortex loops and open strings terminating on mono,poles. Notice that 

there are no free monopoles. That this is the correct interpretation ’ 

is shown in the next section. 

We now want to consider the quadratic form of Z, Eq. (33b ) 

and carry out the Gaussian functional integral. The gauge choice 

S = 0 (and Q = 0) is particularly simple. We have 

‘A2 ‘(e e -q h e-zK A A )2 
z = WI P h 

= 
c 

s 

dAlea’ 
(E 

2 22 
DPh AA) +mAX. P x 1 2’tiJ A e x x 

(35) 

t t Jx 
--a, 

= Z. c exp[-4r2d,(j)DXI*(j - k; m2)Jr(W] 

IJI 
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where we have restored the lattice site indices in the last line. Here, 

Z. is the ‘partition function for the massive vector field with no 

topological excitations, and D I$ 
2 

‘; m ) is the three-dimensional lattice 

Green’s functions defined by 

D Cj 
klJ 

-k;m2)Z [6hL-y] D(j -k;m2) 

j 

(36) 

(- Ap2 + m’)D(j -k; m2) = 6 
jk l 

Thus, 

Z = Z. 1 exp [- KT2(5x (j)J, (k) + --$ Q(j )Q&))D(j - k m2-;) 

iJ\ 

where 

Q(j) E \Jx(j) o 

This appears to be a theory of a massive “vector” particle 

in the *presence of certain topologically induced sources. (R.emember 

that d = 3, so the angular momentum corres,ponds to O(2). ) Having done 

the Gaussian integral, we see that the interactions between the topo- 

logical excitations are short range since 

.D(j; m2) +- e 
- j m I I 

-m as Ij 1 --t a 

(37) 

. (38 ) 
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This is to be contrasted with the x-y model in three dimensions in 

which ‘pieces of the vortex rings interact via a power law potential. 

Before turning to four and higher dimensions, it is amusing to 

note the following relationship between the topological excitations of 

the two and three dimensional theories. Two dimensions may be 

thought of as a slice through three dimensions. In the d = 3 x-y model, 

the topological excitations are vortex rings. The intersection of a 

ring with a plane is two points, or a vortex-antivortex pair. This 

immediately leads to the neutrality condition for the d = 2 .XY model. 

In the d = 3 Abelian Biggs theory, we have, in addition to closed 

rings, open, finite vortex strings terminating on monopoles. Slicing 

through a line with a plane, we have a single vortex penetration with no 

compensating antivortex. We therefore lose the requirement of overall 

neutrality, as discussed in the last subsection. 

C. Four and Higher Dimensions 

In four and higher dimensions the analysis proceeds in essentially 

the same way as in three dimensions, only the indices are more 

complicated. Since four dimensions occupies a special place in our view 

of space-time, we’ll discuss this case explicitly. 

For d = 4 the ,partition function has the form (again suppressing 

site indices) 
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Z+3X (-& 
2 z = 4x 6 eoe pv4JE4w 

A 8 ) + K cos(A$ - eo) 
P 0 

Integrating over x and implies the constraints 

(1) a,“, = 0 

(2) AAn 4 p pv ymp Eaf3po 
+mo. = 0 

The divergence condition requires that m D be a curl, 

. 

m = & 0 2 qxYpApAcYf3 (*cxp = -ApJ 0 

Then the curl. condition becomes 

This requires that the quantit,y in brackets be a gradient 

n = E 
PV pvczp cs *q3 + acySp) 

(41) 

(42) 

(43a) 

(43b) 
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which is analogous to Eq. 29 for the three dimensional case. As 

before, ambiguities in the definition of the integers A 
43 

and S 
P 

may be 

understood as a gauge symmetry: 

Following the arguments of the last subsection we may write the 

partitibn function as 

where the ,prime indicates that we must fix a gauge, and the integer- 

valued sources (which are the topological excitations) satisfy 

J =-J piJ OP 
; AJ 

P P” 
= Qa 

Note that this implies that Qo is conserved: 

(44 ) 

(46a) 

A& =o o 
CT0 

(46b) 
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The interpretation of these topological singularities is given by 

a simple generalization from three dimensions. In the pure gauge 

theory in four dimensions, the singularities & would be monopole 

loops, i. e. , “world lines” of monopoles-antimonopol.e pairs. In the XY 

model in four dimensions, the currents J 
P 

would be conserved, i. e. 

AJ =O =A J 
P Pa 0 Pd 

and would represent closed orientable surfaces 

(spheres and spheres with handles). In addition to these closed 

surfaces, the model considered here has excitations which are slices 

through these surfaces (or windows on the surface) which are bounded 

by the monopole loop. In three dimensions current lines terminate on 

monopoles, and in four dimensions, a surface terminates on monopole 

loops 0 If we think of one dimension as time, these topological excitations 

represent the following events: At some time a monopole-antimonopole 

pair is created. As they separate, they are connected by a string. 

At some later time, the #pair comes together and annihilates. Because 

the string itself has dynamical degrees of freedom, one also has events 

in which a string loop is created, evolves, and annihilates. This latter 

event sweeps out a closed surface in space-time. 

In the quadratic approximation the partition function in the z 

s CT = 0 gauge is 
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A A 2’ + m2A 2 00 

dA e 
PQ 

TW x P PO 1 + niJ A 
PC Pa l 

(47 ) 

One can show from this form that the antisymmetric tensor A 
PO 

represents a massive spin one field. As before, we could carry out the 

Gaussian integral. The result is an expression similar to Eq. (35). 

It has a factor? _Z,, rep-resenting the partition function of a massive s_pin ~----.- .--.- 

wave with two polarization indices. This is multiplied by the -pa.rtitlon function 

for the topological excitations described above ,whose elements interact 

through a Yukawa-like potential of range m -1 
. 

IV. THE DUAL FIELDS AS TOPOLOGICAL EXCITATIONS 

In this section, we explore a periodic Gaussian Abelian Higgs 

model primarily in order to motivate the interpretation of the integer- 

valued sources which arise in the formulation of the dual theory as 

topological singularities of the original theory. A similar period& 

Gaussian model but ‘analogous to the XY model was introduced 

15 
by Ber ezinskii 

14 
and Villain. For that system the periodic 

Gaussian model was shown to be a good low temperature approxi- 
-. 

mation to the XY model, (which, when expressed in its dual repiresentation 

just reproduces exactly the quadratic approximation to the dual 

formulation of the full moddl) and to be a convenient vehicle for 

describing the topological excitations of the system. Our periodic 



-27- FERMILAB-Pub-77/97-THY 

Gaussian model ‘possesses ,precisely the same characteristics vis a es 
--- 

the Abelian Higgs model. (Other authors who have also considered 

~~ogous periodic Gaussian models include those of Refs. 8 and 16). 

The ,periodic Gaussian model arises by approximating the cosine as 

OJ 

e’ 
cos x 

e e P 
z 

e (48 ) 
.==-a 

and allowing x on the right-hand side to range over (- co, ~3 ). 
[ 
Villain? 5 

in fact, generalized this to allow the coefficient of the quadratic term 

to be temperature dependent in a certain way which, he argued, might 

be useful at both low and high temperatures. The form given here is 

valid at low temperatures. See also Jose, et al.1.6 1 
Consider, for example, the two-dimensional case. The partition 

function for our periodic Gaussian model is 

i I 
--.d 

z = 
w =Pe 

-p(Apx - 8 + ZlTaP)2 
tJ 

(49 ) 

where we are to sum over integers a and b. 
P 

The periodicity of the 

original problem does not require summing independent& over both b 

and a 
P* 

Indeed, even if we choose a gauge to define the functional 

integrals over x and 6 
t-l’ 

summing independently over a and b would 
P 

render 2 defined in Eq. 49’ infinite. In fact, this infinity is not directly 

connected with the local gauge symmetry of the original model. Even 

the ,periodic Gaussian analogue of the d = 2XY model contains a similar 
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(although somewhat simpler) summation redundancy. In the present 

case, the redundancy can be eliminated by noting that we can first 

shift0 +-8 + 2ra and then redefine b *b - 2ne A a 
P P P PV P v’ 

Thereby a 
P 

completely disappears from the problem, and so without loss of 

generality we can set a E 0. 
EL 

However, our formal manipulations can 

be carried through regardless of this redundancy, and so we shall not 

now place any specific constraint on the sum over a and b. The tilde 
P 

over the summation sign reminds US that such a restriction is required 

in principle. Later in this section we will eliminate the summation 

redundancy in a different way to show that when d = 2 it is not necessary 

to explicitly make F p-v 
compact. Because of the local gauge invariance, . 

the expression above is also infinite, due to theintegrals over x and 

8 t and a gauge choice must be made to render it finite. But again, 

for the formal manipulations we are concerned with, we can ignore 

this infinity and imagine dividing at the end by the infinite volume of 

the gauge group. One may of course choose a gauge from the beginning 

and after carrying out analogous manipulations one will be led to the 

same conclusions. 

Next we introduce the Fourier transform for each exponential 

using 

3x+Zrm)2 00 

e = &i 
s 

--1-y2+iy(x+2rm) 
dY e 

2P . (50) 
-CO 
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(although somewhat simpler) summation redundancy. In the present 

case, the redundancy can be eliminated by noting that we can first 

shift8 *8 + 2ra a.nd then redefine b +-b - 27~~ A a Thereby a 
P tJ+ P PV P v’ P 

completely disappears from the problem, and so without loss of 

generality we can set a 
P 

I 0. However, our formal manipulations can 

be c.arried through regardless of this redundancy, and so we shall not 

now place any specific constraint on the sum over a and b. The tilde 
P 

over the summation sign reminds us that such a restriction is required 

in principle e Later in this section we will eliminate the summation 

redundancy in a different way to show that when d = 2 it is not necessary 

to explicitly make F compact. -pv Because of the local gauge invariance, 

the expression above is also infinite, due to theintegrals over x and 

6 6 and a gauge choice must be made to render it finite. But again, 

for the formal manipulations we are concerned with, we can ignore 

this infinity and imagine dividing at the end by the infinite volume of 

the gauge group. One may of course choose a gauge from the beginning 

and after carrying out analogous manipulations one will be led to the 

same conclusions. 

Next we introduce the Fourier transform for each exponential 

using 

3(x+ZTrn)2 

= & 
s 

a) -L!- y2 + i,y(x + 237-n) 

dY e 
2P e 

-03 
. (50) 
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Then we have (up to multiplicative constants) 

1 
e- 2p 

s2 * is( E 
PV 

a 8 +Zrb) 
P v . 

Carrying out the integrals over x and 8 ~ yields the constraints 

C Notice that there are many redundant delta functions 

in this set of constraints. Thus, 2 is proportional to some infinite 

‘power of 6(0 ). This just reflects the fact that we did not specify the 

gauge and represents once again the infinite gauge volume.) These 

constraints are satisfied as follows: The first condition implies that t 
P 

can be written as a curl 

t = E 
P 

WJ 
I-LV v 

Then the second condition is equivalent to 

APtS + $) = 0 

(51) 

(52) 

(53a) 

(53b) 

so that S(j) + q(j) must be independent of the lattice site j. Without 

loss of generality, we may choose S + 4 = 0, and so, up to an overall 

(infinite) factor, we get 
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e 
-iZdb + e ,epav)+ 

Thus, the source of the + field is the integer 

p = E Aa +b 
PV PV 

(54) 

(55) 

( Compare these expressions with Eq. 20. ) If we think 

of av as the ” integer” ,part of the gauge invariant AVx - 8 k and of b as 

the circulation of the vector *potential, then we see that p represents 

the vorticity of the original fields. 

As mentioned earlier, it is redundant to sum over both ap and b. 

It is interesting to note, in particular, that by shifting 8 +- 8 -t- 2~rc 
P P P’ 

we may choose c such that E A c + b = 0. This eliminates b from 
P PV P v 

the summand,in Eq. 49, and thus it is unnecessary to make the gauge 

field compact in two dimensions to obtain these vortices as to,pological 

singularities. This can be understood by remembering that in two 

dimensions the pure gauge fields have no dynamical degrees of freedom. 

In higher dimensions, on the other hand, additional non-trivial excitations 

result from the compact nature of F 
P 

as we shall see. (Note 

in additiog that even after eliminating b; it is still redundant to 

sum over all a 
P’ 

In,particular, since the summand depends only o.n p 
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we must not sum over ad s which differ from each other only by a 

gradient. ) 

We will now sketch the similar construction in three dimensions. 

For d = 3 we write the periodic quadratic partition function as 

dXdePe 
- .2Apx 

As before, the sum over all values of both aP and bX is redundant as 

indicated by the tilde, However, in this case, we cannot eliminate bX 

since an arbitrary shift of OV * OV -f 27~~ t, gives bX -f bX + e $dApcvo 

One cannot always find a set of c to cancel bX, because the second 
V 

term is divergenceless whereas the first term, in general, is not. 

As before, we carry along this redundant summation for now, Next, 

Fourier transforming gives 

*is (f A 19 + 2Tb.J 
1 xpv p v 

. 

(56) 

(57) 
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Performing the integrals over x and 6 v gives the Dirac delta function 

constraints 

This implies, first, that tP is a curl, t = E 
P 

A A , and, secondly, 
PP P CT 

that sX - A, is a gradient, A, - sx 5 AX% Note also that the delta 

function constraints ( 58 ) are redundant. As before, the ambiguities 

in the definition of Ah and S may be understood as a gauge symmetry 

AA -+AA +A,/; S+S+A. Thus we have 

I 
75 

4\. 
e - 6 (AX - A$)’ 

i 24 E A A a -+ bX(Ah - A ,S)) 
e pvx v A p 

where we have dropped an over-all infinite factor from the redundant 

delta functions, and the prime on the integral indicates that we must 

fix a gauge when integrating over Ax and S. We can now ,perform 

summation by parts to write the last factor in the form (cf. Eq, ( 32 ) ) 

(58 1 

(59) 

2~ri(J~A~ + QS) 
e (boa) 

where 
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(60b 1 

Q 3 Axbx . 

Note that the relation & = AxJx follows, as expected for gauge invariance. 

We are thus led to the physical inter,pretation that the current Jx is 

the (suitably defined) integer ,part of F 
P” 

,plus the curl (vorticity) of 

the “integer part” of the angle Apx - 8 
P’ 

Its divergence, Q is the 

monopole density. 

Similar considerations in higher dimensions motivate the general 

interpretation of the various integer-valued sources as topological 

excitations of the original fields. 

V. COMMENTS 

Using an exact duality transformation, we have identified the 

topological excitations of the lattice Abelian Higgs model, and have 

shown what their interactions are. We have some comments to make 

about these results. 

I ) To better understand these excitations, it may be useful to 

compare our model with related models. This has been done to some 

extent in the text. Here we summarize these comments. To begin 

with, note that the familiar XY model is an m + 0 limit of our model. 

This can be understood intuitively since, for p >> K, the energy is 
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minimized for a vanishing field strength (F =A 8 -A 8 
I-” FV VP 

= 0). 

This means that 8 ~ is a ‘pure gauge (of the form Ayh) and so, shifting 

X “X - A, we recover the partition function for the XY model. In 

this limiting case (m = 0), there are several striking differences from 

the finite mass case. 

First, as we mentioned in section IILA, in two dimensions the 

self energy of a vortex grows for small m like’in I/m, so when m = 0 

single vortices at low temperatures are no longer allowed. Qn the 

other hand, a vortex-antivortex ‘pair has finite energy even for m = 0, 

so in this limit the only finite energy configurations are those which 

respect overall neutrality. In addition, the interaction between vortices 

is no longer short range when m 
2 

= 0. Indeed the potential grows 

logarithmically as the separation between vortices increases. It is 

attractive between a vortex (say p > 0) and an antivortex (p -< 0) and 

binds them at low e.nough temperatures, 

In higher dimensions (d 2 3 ), there are no monopoles or monopole 

currents (the Qa 
@d-3 

in, for instance, Eqs. 33 and 45) at m = 0, and the 
1 

l . . 

topological current density J is conserved. The short 
t915’2’ ’ l lJ’d-2 

range interaction between topological excitationsin these dimensions 

also disappears when m = 0, and is supplanted by a power law potential. 

It is also worthwhile to compare our model with the pure gauge 

theory. For example, in three dimensions, the pure gauge theory has 

topological singularities which are isolat ed monopoles. When the gauge 
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fields are coupled in a gauge invariant manner to the Higgs matter 

fields, the medium attaches a vortex string to the monopoles. Thus, 

:monopoles can no longer exist in isolation, but appear only as monopole- 

antimonopole ‘pairs attached by strings. 

2) Notice that, by the exact duality transformation, we have 

succeeded in establishing an equivalence between theories. The 

original ,partition function is expressed in terms of ,phases x (j) and 

gauge fields 8 P(j), whereas the transformation reexpresses the same 

quantity in terms of continuous “spin waves” (+(j); AP(j), S(j); . . . ) 

and to,pological excitations (p(j ); JP(j ), Q(j ); . 0 . ). (Recall Eqs. 

20, 33 and .+5. ) .The two languages ,provide exact alternative 

descriptions of the same theory. This is one of the most intriguing 

aspects of the duality transformation, and it is interesting to ask 

whether a similar transformation can be found for a non-abelian symmetry. 

3 ) In ref. ( 9 ) we will describe what we expect the phases of our 

model to be, but we wish to make a few comments here. First we note 

the resemblance of the Abelian Higgs model to the theory of spin-glasses. 10 

.A naive model of a spin glass has the Hamiltonian 

H = ZJ(i, j) 8i)e T(j) 

where g(i) are spin vectors coupled by a random variable J(i, j ). 

L-n the simplest version of the model the spins are Ising spins, S(i) = *tl 
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and J(i, j ) is a nearest neighbor coupling which has some ,probability, 

p,to be ferromagnetic (J.. = +J) and probability 1 - ‘p to be antiferro- 
11 

magnetic J(ij) = -J. Consider in particular the case p = I/ 2. Then the 

theory has a loca,l discrete invariance: 

g(k) + - z(k) 
. . 

J.(k,lj) --+ - J(k, j) . 

The local gauge invariance of electromagnetism is quite analogous, 

being a continuous, U(1) or R1, generalization thereof. Given the 

similarity between the models, one might expect some relationship 

between the phases of the two systems. 

Second, we note that the behavior of the expectation value of the 

Wilson loop integral: I- :<e i 6’dx’” f > changes dramatically when 

the Higgs fields are added to the ‘pure gauge theory. We find that for 

all temperatures and all dimensions, I’ a e 
-I? , for large loops, where P 

is the perimeter of the loop. This is to be contrasted with the ‘pure 

gauge theory in which .I’ is sometimes falls like e 
-P 

, and sometimes 

-p2 
like e , the difference being used as a signal for a phase transition. 

This result is ,perhaps not unexpected, and follows from the fact that 

I? represents a “quark” loop whose charge is equal to the charge of 

the Higgs ,particle. Loop integrals associated with fractional charges have a 

quite different behavior.9 We also remark that the different behavior of 
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r in the pure gauge theory and the Higgs theory can be related to the 

different topological excitations of the two theories. See ref. (9 ) for 

a further discussion of these ‘points. 

Finally, we return to a ,point mentioned in section II, namely the 

behavior of our theory in the continuum limit. The question we raised 

there was whether in the continuum limit defined by the renormalization 

group the theory would retain all the interesting to’pological excitations 

we see on the lattice. One possible answer is that there are different 

phases of the models which have different continuum limits. In 

2 
particular, we believe that for d 1 3 and fixed m , there are two phases 

as a function of K for finite K. At high temperatures, (K small), we expect 

to find large distance behavior which is strongly affected by the 

topological excitations, and therefore an appropriate continuum theory 

in which the excitations survive, while at low temperatures we expect 

these excitations not to be as important for the large distance structure, 

and to disappear in the continuum theory. This point is also discussed 

in Ref. ( 9 ). 
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and J(i, j ) is a nearest neighbor coupling which has some ,probability, 

p,to be ferromagnetic (J.. = +J) and probability 1 - ‘p to be antiferro- 
13 

magnetic J(ij) = -J. Consider in particular the case ‘p = 1/Z. Then the 

theory has a local discrete invariance: 

g(k) * - g(k) 

J(k, j) + - J(k, j) . 

The local gauge invariance of electromagnetism is quite analogous, 

being a continuous, U(1) or Ri, generalization thereof. Given the 

similarity between the models, one might expect some relationship 

between the phases of the two systems. 

Second, we note that the behavior of the expectation value of the 

Wilson loop integral, ‘I?= <e > changes dramatically when 

the Higgs fields are added to the pure gauge theory. We find that for 

all temperatures and all dimensions, P * e 
-P , for large loops, where p 

is the ‘perimeter of the loop. This is to be contrasted with the ‘pure 

gauge theory in which .?Z is sometimes falls like e 
-P 

, and sometimes 

-P2 
like e , the difference being used as a signal for a phase transition. 

This result is perhaps not unexpected, and follows from the fact that 

r represents a “quark” loop whose charge is equal to the charge of 

the Higgs ‘particle. Loop integrals associated with fractional charges have a 

quite different behavior.9 We also remark that the different behavior of 
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